Quick Questions 18 Analysis of Variance

I. Copy the formulas and expressions on the right into this ANOVA summary chart.

Variance Analysis Summary Table									
df	Sum of the Squares	Mean Squares	ANOVA						
t - 1	SS _T	$MS_T = \frac{SS_T}{t-1}$	_ MS _T						
N - t	SS _E	$MS_E = \frac{SS_E}{N-t}$	$F = \frac{MS_T}{MS_E}$						
N - 1	SS _{TOTAL}								
	df t - 1 N - t	df Sum of the Squares t - 1 SS _T N - t SS _E	df Sum of the Squares t - 1 SS _T MS _T = $\frac{SS_T}{t-1}$ N - t SS _E MS _E = $\frac{SS_E}{N-t}$						

SS _T	$F = \frac{MS_T}{MS_E}$		
N - t	SS _{TOTAL}		
$MS_T = \frac{SS_T}{t-1}$	t - 1		
$MS_E = \frac{SS_E}{N-t}$	SS _E		
N – 1			

- II. Answer the following fill in the blank questions.
 - A. Analysis of variance requires the populations be <u>normally</u> distributed.
 - B. When using the F distribution, the numerator is always the <u>larger</u> of the 2 variances.
 - C. When doing ANOVA, the numerator of the F distribution measures variance __between _ the treatments.
 - D. When doing ANOVA, the denominator of the F distribution measures variance within the treatments.
- III. Complete the following ANOVA study concerning grade point averages randomly selected by a local college.
 - A. Begin by completing this chart. Those using statistics software should skip to part D.

Analysis of College Grades Based Upon High School Grades							Row Totals Required
	High H.S. G	Grades T₁	Medium H.S. Grades T ₂		Low H.S. Grades T ₃		for Calculations
	College Grades(X ₁)	X_1^2	College Grades(X ₂)	X_2^2	College Grades(X ₃)	X_3^2	
	3.4	11.56	3.2	10.24	2.1	4.41	
	3.5	12.25	2.8	7.84	2.5	6.25	
	3.1	9.61	3.0	9.00	2.7	7.29	
Σx_T	10.0		9.0		7.3		$\Sigma x = 26.3$
$(\Sigma x_T)^2$	100.0		81.0		53.29		
n	3.0		3.0		3.0		N = 9
$\frac{(\sum X_T)^2}{n}$	33.33		27.0		17.76		$\sum \left[\frac{(\sum X_T)^2}{n}\right] = 78.09$
$\sum x_T^2$		33.42		27.08		17.95	$\sum X^2 = 78.45$